Source code for glasses_detector.segmenter

from dataclasses import dataclass, field
from typing import Callable, ClassVar, Collection, overload, override

import numpy as np
import torch
import torch.nn as nn
from PIL import Image
from torchvision.models.segmentation import fcn_resnet101, lraspp_mobilenet_v3_large
from torchvision.transforms.v2.functional import resize, to_image, to_pil_image
from torchvision.utils import draw_segmentation_masks

from .architectures import TinyBinarySegmenter
from .components.base_model import BaseGlassesModel
from .components.pred_type import Default
from .utils import FilePath, copy_signature


[docs] @dataclass class GlassesSegmenter(BaseGlassesModel): r"""**Binary** segmenter for glasses and their parts. This class allows to perform binary segmentation of glasses or their particular parts, e.g., frames, lenses, legs, shadows, etc. Specifically, it allows to generate a mask of the same size as the input image where each pixel is mapped to a value indicating whether it belongs to the positive category (e.g., glasses) or not. ---- .. dropdown:: Performance of the Pre-trained Segmenters :icon: graph :color: info :animate: fade-in-slide-down :name: Performance of the Pre-trained Segmenters +----------------+------------+-------------------------+----------------------+--------------------------+-------------------------+ | Kind | Size | BCE :math:`\downarrow` | MCC :math:`\uparrow` | Dice :math:`\uparrow` | IoU :math:`\uparrow` | +================+============+=========================+======================+==========================+=========================+ | | ``small`` | 0.0604 | 0.8109 | 0.8025 | 0.6702 | | +------------+-------------------------+----------------------+--------------------------+-------------------------+ | ``frames`` | ``medium`` | 0.0955 | 0.7593 | 0.7438 | 0.5921 | | +------------+-------------------------+----------------------+--------------------------+-------------------------+ | | ``large`` | TBA | TBA | TBA | TBA | +----------------+------------+-------------------------+----------------------+--------------------------+-------------------------+ | | ``small`` | 0.0898 | 0.8676 | 0.8720 | 0.7731 | | +------------+-------------------------+----------------------+--------------------------+-------------------------+ | ``full`` | ``medium`` | 0.0662 | 0.8913 | 0.8955 | 0.8108 | | +------------+-------------------------+----------------------+--------------------------+-------------------------+ | | ``large`` | TBA | TBA | TBA | TBA | +----------------+------------+-------------------------+----------------------+--------------------------+-------------------------+ | | ``small`` | 0.0872 | 0.7455 | 0.7271 | 0.5712 | | +------------+-------------------------+----------------------+--------------------------+-------------------------+ | ``legs`` | ``medium`` | 0.0743 | 0.7810 | 0.7681 | 0.6236 | | +------------+-------------------------+----------------------+--------------------------+-------------------------+ | | ``large`` | TBA | TBA | TBA | TBA | +----------------+------------+-------------------------+----------------------+--------------------------+-------------------------+ | | ``small`` | 0.0696 | 0.9014 | 0.9076 | 0.8309 | | +------------+-------------------------+----------------------+--------------------------+-------------------------+ | ``lenses`` | ``medium`` | 0.0413 | 0.9455 | 0.9496 | 0.9041 | | +------------+-------------------------+----------------------+--------------------------+-------------------------+ | | ``large`` | TBA | TBA | TBA | TBA | +----------------+------------+-------------------------+----------------------+--------------------------+-------------------------+ | | ``small`` | 0.2130 | 0.3672 | 0.2566 | 0.1472 | | +------------+-------------------------+----------------------+--------------------------+-------------------------+ | ``shadows`` | ``medium`` | 0.1811 | 0.4227 | 0.3199 | 0.1904 | | +------------+-------------------------+----------------------+--------------------------+-------------------------+ | | ``large`` | TBA | TBA | TBA | TBA | +----------------+------------+-------------------------+----------------------+--------------------------+-------------------------+ | | ``small`` | 0.0983 | 0.8072 | 0.8030 | 0.6709 | | +------------+-------------------------+----------------------+--------------------------+-------------------------+ | ``smart`` | ``medium`` | 0.0914 | 0.8233 | 0.8199 | 0.6947 | | +------------+-------------------------+----------------------+--------------------------+-------------------------+ | | ``large`` | TBA | TBA | TBA | TBA | +----------------+------------+-------------------------+----------------------+--------------------------+-------------------------+ .. dropdown:: Size Information of the Pre-trained Segmenters :icon: info :color: info :animate: fade-in-slide-down :name: Size Information of the Pre-trained Segmenters +----------------+---------------------------------------------------------------------------------------------------------------+---------------------------+---------------------------+--------------------------------+----------------------------------+ | Size | Architecture | Params | GFLOPs | Memory (MB) | Filesize (MB) | +================+===============================================================================================================+===========================+===========================+================================+==================================+ | ``small`` | :class:`Tiny Segmenter <.architectures.tiny_binary_segmenter.TinyBinarySegmenter>` | 0.23M | 1.6 | 264.25 | 0.92 | +----------------+---------------------------------------------------------------------------------------------------------------+---------------------------+---------------------------+--------------------------------+----------------------------------+ | ``medium`` | :func:`Lite R-ASPP <torchvision.models.segmentation.lraspp_mobilenet_v3_large>` :cite:p:`howard2019searching` | 3.22M | 0.51 | 220.59 | 12.47 | +----------------+---------------------------------------------------------------------------------------------------------------+---------------------------+---------------------------+--------------------------------+----------------------------------+ | ``large`` | :func:`FCN <torchvision.models.segmentation.fcn_resnet101>` :cite:p:`long2015fully,he2016deep` | 51.94M | 54.1 | 1781.37 | 198.74 | +----------------+---------------------------------------------------------------------------------------------------------------+---------------------------+---------------------------+--------------------------------+----------------------------------+ Examples -------- Let's instantiate the segmenter with default parameters: .. code-block:: python >>> from glasses_detector import GlassesSegmenter >>> seg = GlassesSegmenter() First, we can perform a raw prediction on an image expressed as either a path, a :class:`PIL Image<PIL.Image.Image>` or a :class:`numpy array<numpy.ndarray>`. See :meth:`predict` for more details. .. code-block:: python >>> seg(np.random.randint(0, 256, size=(2, 2, 3), dtype=np.uint8), format="bool") tensor([[False, False], [False, False]]) >>> type(seg(["path/to/image1.jpg", "path/to/image2.jpg"], format="img")[0]) <class 'PIL.Image.Image'> We can also use a more specific method :meth:`process_file` which allows to save the results to a file: .. code-block:: python >>> seg.process_file("path/to/img.jpg", "path/to/pred.jpg", show=True) ... # opens a new image window with overlaid mask >>> seg.process_file(["img1.jpg", "img2.jpg"], "preds.npy", format="proba") >>> np.load("preds.npy").shape (2, 256, 256) Finally, we can also use :meth:`process_dir` to process all images in a directory and save the predictions to a file or a directory: .. code-block:: python >>> seg.process_dir("path/to/dir", "path/to/preds.csv", format="logit") >>> subprocess.run(["cat", "path/to/preds.csv"]) img1.jpg,-0.234,-1.23,0.123,0.123,1.435,... img2.jpg,0.034,-0.23,2.123,-1.123,0.435,... ... >>> seg.process_dir("path/to/dir", "path/to/pred_dir", ext=".jpg", format="mask") >>> subprocess.run(["ls", "path/to/pred_dir"]) img1.jpg img2.jpg ... Args: kind (str, optional): The kind of glasses/parts to perform binary segmentation for. Available options are: +-------------------+---------------------------------------------------------------------+ | | | +-------------------+---------------------------------------------------------------------+ | ``"frames"`` | Frames (including legs) of any glasses | +-------------------+---------------------------------------------------------------------+ | ``"full"`` | Frames (including legs) and lenses of any glasses | +-------------------+---------------------------------------------------------------------+ | ``"legs"`` | Legs of any glasses | +-------------------+---------------------------------------------------------------------+ | ``"lenses"`` | Lenses of any glasses | +-------------------+---------------------------------------------------------------------+ | ``"shadows"`` | Cast shadows on the skin of glasses frames only | +-------------------+---------------------------------------------------------------------+ | ``"smart"`` | Like ``"full"`` but does not segment lenses if they are transparent | +-------------------+---------------------------------------------------------------------+ Defaults to ``"smart"``. size (str, optional): The size of the model to use (check :attr:`.ALLOWED_SIZE_ALIASES` for size aliases). Available options are: +-------------------------+-------------------------------------------------------------+ | | | +-------------------------+-------------------------------------------------------------+ | ``"small"`` or ``"s"`` | Very few parameters but lower accuracy | +-------------------------+-------------------------------------------------------------+ | ``"medium"`` or ``"m"`` | A balance between the number of parameters and the accuracy | +-------------------------+-------------------------------------------------------------+ | ``"large"`` or ``"l"`` | Large number of parameters but higher accuracy | +-------------------------+-------------------------------------------------------------+ Please check: * `Performance of the Pre-trained Segmenters`_: to see the results of the pre-trained models for each size depending on :attr:`kind`. * `Size Information of the Pre-trained Segmenters`_: to see which architecture each size maps to and the details about the number of parameters. Defaults to ``"medium"``. weights (bool | str | None, optional): Whether to load weights from a custom URL (or a local file if they're already downloaded) which will be inferred based on model's :attr:`kind` and :attr:`size`. If a string is provided, it will be used as a custom path or a URL (determined automatically) to the model weights. Defaults to :data:`True`. device (str | torch.device | None, optional): Device to cast the model to (once it is loaded). If specified as :data:`None`, it will be automatically checked if `CUDA <https://developer.nvidia.com/cuda-toolkit>`_ or `MPS <https://developer.apple.com/documentation/metalperformanceshaders>`_ is supported. Defaults to :data:`None`. """ kind: str = "smart" size: str = "medium" weights: bool | str | None = True task: str = field(default="segmentation", init=False) DEFAULT_SIZE_MAP: ClassVar[dict[str, dict[str, str]]] = { "small": {"name": "tinysegnet_v1", "version": "v1.0.0"}, "medium": {"name": "lraspp_mobilenet_v3_large", "version": "v1.0.0"}, "large": {"name": "fcn_resnet101", "version": "v1.1.0"}, } DEFAULT_KIND_MAP: ClassVar[dict[str, dict[str, dict[str, str]]]] = { "frames": DEFAULT_SIZE_MAP, "full": DEFAULT_SIZE_MAP, "legs": DEFAULT_SIZE_MAP, "lenses": DEFAULT_SIZE_MAP, "shadows": DEFAULT_SIZE_MAP, "smart": DEFAULT_SIZE_MAP, } @staticmethod @override def create_model(model_name: str) -> nn.Module: match model_name: case "tinysegnet_v1": m = TinyBinarySegmenter() case "lraspp_mobilenet_v3_large": m = lraspp_mobilenet_v3_large(num_classes=1) case "fcn_resnet101": m = fcn_resnet101() m.classifier[-1] = nn.Conv2d(512, 1, 1) m.aux_classifier = None case _: raise ValueError(f"{model_name} is not a valid choice!") return m
[docs] @staticmethod def draw_masks( image: Image.Image | np.ndarray | torch.Tensor, masks: Image.Image | list[Image.Image] | np.ndarray | torch.Tensor, alpha: float = 0.5, colors: ( str | tuple[int, int, int] | list[str | tuple[int, int, int]] | None ) = "red", ) -> Image.Image: """Draws mask(-s) over an image. Takes the original image and a mask or a list of masks and overlays them over the image with a specified colors and transparency. See Also: * :func:`~torchvision.utils.draw_segmentation_masks` for more details about how the masks are drawn. * :func:`~torchvision.transforms.v2.functional.to_image` for more details about the expected formats if the input image and the masks are of type :class:`PIL.Image.Image` or :class:`numpy.ndarray`. Args: image (PIL.Image.Image | numpy.ndarray | torch.Tensor): The original image. It can be either a *PIL* :class:`~PIL.Image.Image`, a *numpy* :class:`~numpy.ndarray` of shape ``(H, W, 3)`` or ``(H, W)`` and type :attr:`~numpy.uint8` or a *torch* :class:`~torch.Tensor` of shape ``(3, H, W)`` or ``(H, W)`` and type :attr:`~torch.uint8`. masks (PIL.Image.Image | list[PIL.Image.Image] | numpy.ndarray | torch.Tensor): The mask or a list of masks to draw over the image. It can be either a *PIL* :class:`~PIL.Image.Image` or a list of them, a *numpy* :class:`~numpy.ndarray` of shape (H, W) or (N, H, W) and type :attr:`~numpy.uint8` or :class:`~numpy.bool_`, or a *torch* :class:`~torch.Tensor` of shape ``(H, W)`` or ``(N, H, W)`` and type :attr:`~torch.uint8` or :attr:`~torch.bool`. Note: ``N`` is the number of masks. alpha (float, optional): Float number between ``0`` and ``1`` denoting the transparency of the masks. ``0`` means full transparency, ``1`` means no transparency. Defaults to ``0.5``. colors (str | tuple[int, int, int] | list[str | tuple[int, int, int]] | None, optional): List containing the colors of the boxes or single color for all boxes. The color can be represented as PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``. If :data:`None`, random colors are generated for for each mask. Defaults to ``"red"``. Returns: PIL.Image.Image: The RGB image with the mask drawn over it. """ if isinstance(masks, list) and isinstance(masks[0], Image.Image): # Ensure each image is commonly in grayscale masks = [mask.convert("L") for mask in masks] elif isinstance(masks, Image.Image): # Ensure mask is in grayscale masks = masks.convert("L") if not isinstance(masks, torch.Tensor): # Convert to a tensor: (H, W) or (N, H, W) masks = torch.from_numpy(np.array(masks)) if masks.dtype == torch.uint8: # Convert to bool masks = masks > 128 # Draw the masks on top of the image new_image = draw_segmentation_masks( image=to_image(image), masks=masks, alpha=alpha, colors=colors, ).to(torch.uint8) return to_pil_image(new_image)
@overload def predict( self, image: FilePath | Image.Image | np.ndarray, format: ( str | dict[bool, Default] | Callable[[torch.Tensor], Default] | Callable[[Image.Image, torch.Tensor], Default] ) = "img", output_size: tuple[int, int] | None = None, input_size: tuple[int, int] | None = (256, 256), ) -> Default: ... @overload def predict( self, image: Collection[FilePath | Image.Image | np.ndarray], format: ( str | dict[bool, Default] | Callable[[torch.Tensor], Default] | Callable[[Image.Image, torch.Tensor], Default] ) = "img", output_size: tuple[int, int] | None = None, input_size: tuple[int, int] | None = (256, 256), ) -> list[Default]: ...
[docs] @override def predict( self, image: ( FilePath | Image.Image | np.ndarray | Collection[FilePath | Image.Image | np.ndarray] ), format: ( str | dict[bool, Default] | Callable[[torch.Tensor], Default] | Callable[[Image.Image, torch.Tensor], Default] ) = "img", output_size: tuple[int, int] | None = None, input_size: tuple[int, int] | None = (256, 256), ) -> Default | list[Default]: """Predicts which pixels in the image are positive. Takes a path or multiple paths to image files or the loaded images themselves and outputs a formatted prediction indicating the semantic mask of the present glasses or their specific part(-s). The format of the prediction, i.e., the prediction type is :data:`~glasses_detector.components.pred_type.Default` type which corresponds to :attr:`~.PredType.DEFAULT`. Warning: If the image is provided as :class:`numpy.ndarray`, make sure the last dimension specifies the channels, i.e., last dimension should be of size ``1`` or ``3``. If it is anything else, e.g., if the shape is ``(3, H, W)``, where ``W`` is neither ``1`` nor ``3``, this would be interpreted as 3 grayscale images. Args: image (FilePath | PIL.Image.Image | numpy.ndarray | typing.Collection[FilePath | PIL.Image.Image | numpy.ndarray]): The path(-s) to the image to generate the prediction for or the image(-s) itself represented as :class:`~PIL.Image.Image` or as :class:`~numpy.ndarray`. Note that the image should have values between 0 and 255 and be of RGB format. Normalization is not needed as the channels will be automatically normalized before passing through the network. format (str | dict[bool, Default] | typing.Callable[[torch.Tensor], Default], optional): The string specifying the way to map the predictions (pixel scores) to outputs (masks) of specific format. These are the following options (if ``image`` is a :class:`~typing.Collection`, then the output will be a :class:`list` of corresponding items of **output type**): .. table:: :widths: 10 30 60 +---------------+-------------------------------------------------------------------------+---------------------------------------------------------------------------------------------+ | **format** | **output type** | **prediction mapping** | +===============+=========================================================================+=============================================================================================+ | ``"bool"`` | :class:`torch.Tensor` of type :data:`torch.bool` of shape ``(H, W)`` | :data:`True` for positive pixels, :data:`False` for negative pixels | +---------------+-------------------------------------------------------------------------+---------------------------------------------------------------------------------------------+ | ``"int"`` | :class:`torch.Tensor` of type :data:`torch.int64` of shape ``(H, W)`` | ``1`` for positive pixels, ``0`` for negative pixels | +---------------+-------------------------------------------------------------------------+---------------------------------------------------------------------------------------------+ | ``"logit"`` | :class:`torch.Tensor` of type :data:`torch.float32` of shape ``(H, W)`` | Raw score (real number) of being a positive pixel | +---------------+-------------------------------------------------------------------------+---------------------------------------------------------------------------------------------+ | ``"proba"`` | :class:`torch.Tensor` of type :data:`torch.float32` of shape ``(H, W)`` | Probability (a number between 0 and 1) of being a positive pixel | +---------------+-------------------------------------------------------------------------+---------------------------------------------------------------------------------------------+ | ``"mask"`` | :class:`PIL.Image.Image` of mode ``"L"`` (grayscale) | *White* for positive pixels, *black* for negative pixels | +---------------+-------------------------------------------------------------------------+---------------------------------------------------------------------------------------------+ | ``"img"`` | :class:`PIL.Image.Image` of mode ``"RGB"`` (RGB) | The original image with the mask overlaid on it using default values in :meth:`.draw_masks` | +---------------+-------------------------------------------------------------------------+---------------------------------------------------------------------------------------------+ It is also possible to provide a dictionary with 2 keys: :data:`True` and :data:`False`, each mapping to values corresponding to what to output if the predicted pixel is positive or negative. Further, a custom callback function is also possible that specifies how to map the original image (:class:`~PIL.Image.Image`) and the mask prediction (:class:`~torch.Tensor` of type :data:`torch.float32` of shape ``(H, W)``), or just the predictions to a formatted :data:`~glasses_detector.components.pred_type.Default` output. Defaults to "img". output_size (tuple[int, int] | None, optional): The size (width, height), or ``(W, H)``, to resize the prediction (output mask) to. If :data:`None`, the prediction will have the same size as the input image. Defaults to :data:`None`. input_size (tuple[int, int] | None, optional): The size (width, height), or ``(W, H)``, to resize the image to before passing it through the network. If :data:`None`, the image will not be resized. It is recommended to resize it to the size the model was trained on, which by default is ``(256, 256)``. Defaults to ``(256, 256)``. Returns: Default | list[Default]: The formatted prediction or a list of formatted predictions if multiple images were provided. Raises: ValueError: If the specified ``format`` as a string is not recognized. """ if isinstance(f := format, str): # Update mask type match format: case "bool": format = {True: True, False: False} case "int": format = {True: 1, False: 0} case "logit": format = lambda x: x case "proba": format = lambda x: x.sigmoid() case "mask": format = lambda img, x: Image.fromarray( ((x[0] > 0) * 255).to(torch.uint8).numpy(force=True), mode="L", ).resize(output_size if output_size else img.size) case "img": format = lambda img, x: self.draw_masks( img.resize(output_size) if output_size else img, Image.fromarray( ((x[0] > 0) * 255).to(torch.uint8).numpy(force=True), mode="L", ).resize(output_size if output_size else img.size), ) case _: raise ValueError(f"Invalid format: {format}") if isinstance(d := format, dict): # If mask type was specified as dictionary format = lambda x: torch.where((x > 0), d[True], d[False]) if isinstance(f, dict) or (isinstance(f, str) and f not in {"mask", "img"}): # Apply torch transform if not mask or img format_fn = format format = lambda img, x: resize( inpt=format_fn(x), size=output_size if output_size else img.size, ).squeeze(0) return super().predict(image, format, input_size)
@override def forward(self, x: torch.Tensor) -> torch.Tensor: return self.model(x)["out"] @override @copy_signature(predict) def __call__(self, *args, **kwargs): return super().__call__(*args, **kwargs)