Source code for glasses_detector.classifier

from dataclasses import dataclass, field
from typing import Callable, ClassVar, Collection, overload, override

import numpy as np
import torch
import torch.nn as nn
from PIL import Image, ImageDraw, ImageFont
from torchvision.models import regnet_x_3_2gf, shufflenet_v2_x1_0
from torchvision.transforms.v2.functional import to_pil_image

from .architectures import TinyBinaryClassifier
from .components.base_model import BaseGlassesModel
from .components.pred_type import Default
from .utils import FilePath, copy_signature


[docs] @dataclass class GlassesClassifier(BaseGlassesModel): r"""**Binary** classifier to check if glasses are present. This class allows to perform binary classification for images with glasses, i.e., determines whether or not the glasses are present in the image (primarily focus is on whether or not eyeglasses are worn by a person). It is possible to specify a particular kind of glasses to focus on, e.g., sunglasses. ---- .. dropdown:: Performance of the Pre-trained Classifiers :icon: graph :color: info :animate: fade-in-slide-down :name: Performance of the Pre-trained Classifiers +----------------+------------+-------------------------+---------------------+--------------------------+-------------------------+ | Kind | Size | BCE :math:`\downarrow` | F1 :math:`\uparrow` | ROC-AUC :math:`\uparrow` | PR-AUC :math:`\uparrow` | +================+============+=========================+=====================+==========================+=========================+ | | ``small`` | 0.2160 | 0.9431 | 0.9866 | 0.9757 | | +------------+-------------------------+---------------------+--------------------------+-------------------------+ | ``anyglasses`` | ``medium`` | 0.1539 | 0.9693 | 0.9933 | 0.9895 | | +------------+-------------------------+---------------------+--------------------------+-------------------------+ | | ``large`` | TBA | TBA | TBA | TBA | +----------------+------------+-------------------------+---------------------+--------------------------+-------------------------+ | | ``small`` | 0.2210 | 0.9082 | 0.9808 | 0.9590 | | +------------+-------------------------+---------------------+--------------------------+-------------------------+ | ``eyeglasses`` | ``medium`` | 0.1342 | 0.9502 | 0.9922 | 0.9810 | | +------------+-------------------------+---------------------+--------------------------+-------------------------+ | | ``large`` | TBA | 0.9490 | TBA | TBA | +----------------+------------+-------------------------+---------------------+--------------------------+-------------------------+ | | ``small`` | 0.2331 | 0.8827 | 0.9852 | 0.9551 | | +------------+-------------------------+---------------------+--------------------------+-------------------------+ | ``sunglasses`` | ``medium`` | 0.1794 | 0.9311 | 0.9912 | 0.9739 | | +------------+-------------------------+---------------------+--------------------------+-------------------------+ | | ``large`` | TBA | TBA | TBA | TBA | +----------------+------------+-------------------------+---------------------+--------------------------+-------------------------+ | | ``small`` | 0.3956 | 0.8158 | 0.9326 | 0.9075 | | +------------+-------------------------+---------------------+--------------------------+-------------------------+ | ``shadows`` | ``medium`` | 0.3314 | 0.8468 | 0.9537 | 0.9354 | | +------------+-------------------------+---------------------+--------------------------+-------------------------+ | | ``large`` | TBA | TBA | TBA | TBA | +----------------+------------+-------------------------+---------------------+--------------------------+-------------------------+ .. dropdown:: Size Information of the Pre-trained Classifiers :icon: info :color: info :animate: fade-in-slide-down :name: Size Information of the Pre-trained Classifiers +----------------+-----------------------------------------------------------------------------------------+---------------------------+---------------------------+--------------------------------+----------------------------------+ | Size | Architecture | Params | GFLOPs | Memory (MB) | Filesize (MB) | +================+=========================================================================================+===========================+===========================+================================+==================================+ | ``small`` | :class:`Tiny Classifier <.architectures.tiny_binary_classifier.TinyBinaryClassifier>` | 0.03M | 0.001 | 23.38 | 0.12 | +----------------+-----------------------------------------------------------------------------------------+---------------------------+---------------------------+--------------------------------+----------------------------------+ | ``medium`` | :func:`ShuffleNet <torchvision.models.shufflenet_v2_x1_0>` :cite:p:`ma2018shufflenet` | 1.25M | 0.19 | 84.03 | 4.95 | +----------------+-----------------------------------------------------------------------------------------+---------------------------+---------------------------+--------------------------------+----------------------------------+ | ``large`` | TBA | TBA | TBA | TBA | TBA | +----------------+-----------------------------------------------------------------------------------------+---------------------------+---------------------------+--------------------------------+----------------------------------+ Examples -------- Let's instantiate the classifier with default parameters: .. code-block:: python >>> from glasses_detector import GlassesClassifier >>> clf = GlassesClassifier() First, we can perform a raw prediction on an image expressed as either a path, a :class:`PIL Image<PIL.Image.Image>` or a :class:`numpy array<numpy.ndarray>`. See :meth:`predict` for more details. .. code-block:: python >>> clf(np.random.randint(0, 256, size=(224, 224, 3), dtype=np.uint8)) 'absent' >>> clf(["path/to/image1.jpg", "path/to/image2.jpg"], format="bool") [True, False] We can also use a more specific method :meth:`process_file` which allows to save the results to a file: .. code-block:: python >>> clf.process_file("path/to/img.jpg", "path/to/pred.txt", show=True) 'present' >>> clf.process_file(["img1.jpg", "img2.jpg"], "preds.npy", format="proba") >>> np.load("preds.npy") array([0.96, 0.81562], dtype=float32) Finally, we can also use :meth:`process_dir` to process all images in a directory and save the predictions to a file or a directory: .. code-block:: python >>> clf.process_dir("path/to/dir", "path/to/preds.csv", format="str") >>> subprocess.run(["cat", "path/to/preds.csv"]) img1.jpg,present img2.jpg,absent ... >>> clf.process_dir("path/to/dir", "path/to/pred_dir", ext=".txt") >>> subprocess.run(["ls", "path/to/pred_dir"]) img1.txt img2.txt ... Args: kind (str, optional): The kind of glasses to perform binary classification for. Available options are: +-------------------+----------------------------------------+ | | | +-------------------+----------------------------------------+ | ``"anyglasses"`` | Any kind glasses/googles/spectacles | +-------------------+----------------------------------------+ | ``"eyeglasses"`` | Transparent eyeglasses | +-------------------+----------------------------------------+ | ``"sunglasses"`` | Opaque and semi-transparent glasses | +-------------------+----------------------------------------+ | ``"shadows"`` | Visible cast shadows of glasses frames | +-------------------+----------------------------------------+ Each kind is only responsible for its category, e.g., if ``kind`` is set to ``"sunglasses"``, then images with transparent eyeglasses will not be identified as positive. Defaults to ``"anyglasses"``. size (str, optional): The size of the model to use (check :attr:`.ALLOWED_SIZE_ALIASES` for size aliases). Available options are: +-------------------------+-------------------------------------------------------------+ | | | +-------------------------+-------------------------------------------------------------+ | ``"small"`` or ``"s"`` | Very few parameters but lower accuracy | +-------------------------+-------------------------------------------------------------+ | ``"medium"`` or ``"m"`` | A balance between the number of parameters and the accuracy | +-------------------------+-------------------------------------------------------------+ | ``"large"`` or ``"l"`` | Large number of parameters but higher accuracy | +-------------------------+-------------------------------------------------------------+ Please check: * `Performance of the Pre-trained Classifiers`_: to see the results of the pre-trained models for each size depending on :attr:`kind`. * `Size Information of the Pre-trained Classifiers`_: to see which architecture each size maps to and the details about the number of parameters. Defaults to ``"medium"``. weights (bool | str | None, optional): Whether to load weights from a custom URL (or a local file if they're already downloaded) which will be inferred based on model's :attr:`kind` and :attr:`size`. If a string is provided, it will be used as a custom path or a URL (determined automatically) to the model weights. Defaults to :data:`True`. device (str | torch.device | None, optional): Device to cast the model to (once it is loaded). If specified as :data:`None`, it will be automatically checked if `CUDA <https://developer.nvidia.com/cuda-toolkit>`_ or `MPS <https://developer.apple.com/documentation/metalperformanceshaders>`_ is supported. Defaults to :data:`None`. """ kind: str = "anyglasses" size: str = "medium" weights: bool | str | None = True task: str = field(default="classification", init=False) DEFAULT_SIZE_MAP: ClassVar[dict[str, dict[str, str]]] = { "small": {"name": "tinyclsnet_v1", "version": "v1.0.0"}, "medium": {"name": "shufflenet_v2_x1_0", "version": "v1.0.0"}, "large": {"name": "regnet_x_3_2gf", "version": "v1.1.0"}, } DEFAULT_KIND_MAP: ClassVar[dict[str, dict[str, dict[str, str]]]] = { "anyglasses": DEFAULT_SIZE_MAP, "eyeglasses": DEFAULT_SIZE_MAP, "sunglasses": DEFAULT_SIZE_MAP, "shadows": DEFAULT_SIZE_MAP, } @staticmethod @override def create_model(model_name: str) -> nn.Module: match model_name: case "tinyclsnet_v1": m = TinyBinaryClassifier() case "shufflenet_v2_x1_0": m = shufflenet_v2_x1_0() m.fc = nn.Linear(1024, 1) case "regnet_x_3_2gf": m = regnet_x_3_2gf(num_classes=1) case _: raise ValueError(f"{model_name} is not a valid choice!") return m
[docs] @staticmethod def draw_label( image: Image.Image | np.ndarray | torch.Tensor, label: str, font: str | None = None, font_size: int = 15, ) -> Image.Image: """Draws a label on the image. This method takes an image and a label and draws a caption box with the given text which is appended to the bottom of the image. Args: image (PIL.Image.Image | numpy.ndarray | torch.Tensor): The original image. It can be either a *PIL* :class:`~PIL.Image.Image`, a *numpy* :class:`~numpy.ndarray` of shape ``(H, W, 3)`` or ``(H, W)`` and type :attr:`~numpy.uint8` or a *torch* :class:`~torch.Tensor` of shape ``(3, H, W)`` or ``(H, W)`` and type :attr:`~torch.uint8`. label (str): The label to write in the caption box that is appended to the bottom of the image. font (str | None, optional): A filename containing a *TrueType* font. If the file is not found in this filename, the loader may also search in other directories, such as the ``fonts/`` directory on Windows or ``/Library/Fonts/``, ``/System/Library/Fonts/`` and ``~/Library/Fonts/`` on macOS. Defaults to :data:`None`. font_size (int, optional): The requested font size in points used when calling :meth:`~PIL.ImageFont.truetype`. Defaults to ``15``. Returns: PIL.Image.Image: The extended original image in height with the caption box appended to the bottom. """ if isinstance(image, torch.Tensor): # Convert tensor to PIL image image = to_pil_image(image) if isinstance(image, np.ndarray): # Convert ndarray to PIL image image = Image.fromarray(image) if font is None: # Use the default system font font = ImageFont.load_default() else: # Use the specified font with the specified font size font = ImageFont.truetype(font=font, size=font_size) # Create a new image with extra space for the title new_image = Image.new("RGB", (image.width, image.height + 2 * font_size)) new_image.paste(image) # Draw the title draw = ImageDraw.Draw(new_image) _, _, text_width, text_height = font.getbbox(label) x = (new_image.width - text_width) / 2 y = image.height + (font_size * 2 - text_height) / 2 draw.text((x, y), label, font=font, fill="white") return new_image
@overload def predict( self, image: FilePath | Image.Image | np.ndarray, format: str | dict[bool, Default] | Callable[[torch.Tensor], Default] = "str", input_size: tuple[int, int] | None = (256, 256), ) -> Default: ... @overload def predict( self, image: Collection[FilePath | Image.Image | np.ndarray], format: str | dict[bool, Default] | Callable[[torch.Tensor], Default] = "str", input_size: tuple[int, int] | None = (256, 256), ) -> list[Default]: ...
[docs] @override def predict( self, image: ( FilePath | Image.Image | np.ndarray | Collection[FilePath | Image.Image | np.ndarray] ), format: str | dict[bool, Default] | Callable[[torch.Tensor], Default] = "str", input_size: tuple[int, int] | None = (256, 256), ) -> Default | list[Default]: """Predicts whether the positive class is present. Takes a path or multiple paths to image files or the loaded images themselves and outputs a formatted prediction for each image indicating whether it belongs to a positive class, e.g., *"anyglasses"*, or not. The format of the prediction, i.e., the prediction type is :data:`~glasses_detector.components.pred_type.Default` type which corresponds to :attr:`~.PredType.DEFAULT`. Warning: If the image is provided as :class:`numpy.ndarray`, make sure the last dimension specifies the channels, i.e., last dimension should be of size ``1`` or ``3``. If it is anything else, e.g., if the shape is ``(3, H, W)``, where ``W`` is neither ``1`` nor ``3``, this would be interpreted as 3 grayscale images. Args: image (FilePath | PIL.Image.Image | numpy.ndarray | typing.Collection[FilePath | PIL.Image.Image | numpy.ndarray]): The path(-s) to the image to generate the prediction for or the image(-s) itself represented as :class:`~PIL.Image.Image` or as :class:`~numpy.ndarray`. Note that the image should have values between 0 and 255 and be of RGB format. Normalization is not needed as the channels will be automatically normalized before passing through the network. format (str | dict[bool, Default] | typing.Callable[[torch.Tensor], Default], optional): The string specifying the way to map the predictions to labels. These are the following options (if ``image`` is a :class:`~typing.Collection`, then the output will be a :class:`list` of corresponding items of **output type**): +-------------+--------------------------+--------------------------------------------------------------------------------------------------------------------------------------+ | **format** | **output type** | **prediction mapping** | +=============+==========================+======================================================================================================================================+ | ``"bool"`` | :class:`bool` | :data:`True` if positive, :data:`False` if negative | +-------------+--------------------------+--------------------------------------------------------------------------------------------------------------------------------------+ | ``"int"`` | :class:`int` | ``1`` if positive, ``0`` if negative | +-------------+--------------------------+--------------------------------------------------------------------------------------------------------------------------------------+ | ``"str"`` | :class:`str` | ``"present"`` if positive, ``"absent"`` if negative | +-------------+--------------------------+--------------------------------------------------------------------------------------------------------------------------------------+ | ``"logit"`` | :class:`float` | Raw score (real number) of a positive class | +-------------+--------------------------+--------------------------------------------------------------------------------------------------------------------------------------+ | ``"proba"`` | :class:`float` | Probability (a number between 0 and 1) of a positive class | +-------------+--------------------------+--------------------------------------------------------------------------------------------------------------------------------------+ | ``"img"`` | :class:`PIL.Image.Image` | The original image with an inserted title using default values in :meth:`.draw_label` (caption text corresponds to ``"str"`` format) | +-------------+--------------------------+--------------------------------------------------------------------------------------------------------------------------------------+ It is also possible to provide a dictionary with 2 keys: :data:`True` and :data:`False`, each mapping to values corresponding to what to output if the predicted label is positive or negative. Further, a custom callback function is also possible that specifies how to map a raw :class:`torch.Tensor` score of type ``torch.float32`` of shape ``(1,)`` to a label. Defaults to ``"str"``. input_size (tuple[int, int] | None, optional): The size (width, height), or ``(W, H)``, to resize the image to before passing it through the network. If :data:`None`, the image will not be resized. It is recommended to resize it to the size the model was trained on, which by default is ``(256, 256)``. Defaults to ``(256, 256)``. Returns: Default | list[Default]: The formatted prediction or a list of formatted predictions if multiple images were provided. Raises: ValueError: If the specified ``format`` as a string is not recognized. """ if isinstance(format, str): # Check format match format: case "bool": format = {True: True, False: False} case "int": format = {True: 1, False: 0} case "str": format = {True: "present", False: "absent"} case "logit": format = lambda x: x.item() case "proba": format = lambda x: x.sigmoid().item() case "img": format = lambda img, x: self.draw_label( img, "present" if (x > 0).item() else "absent" ) case _: raise ValueError(f"Invalid format: {format}") if isinstance(d := format, dict): # If the format was specified as dictionary format = lambda x: d[(x > 0).item()] return super().predict(image, format, input_size)
@override def forward(self, x: torch.Tensor) -> torch.Tensor: return super().forward(x) @override @copy_signature(predict) def __call__(self, *args, **kwargs): return super().__call__(*args, **kwargs)